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Abstract. A Riemann space associated with a correlated walk (cw) model is investigaled by 
a numerical method, which is applicable to many other stochastic processes. The behaviour of 
the Riemann c w a m  is shown lo have a close relation to the stability of lhe cw system. The 
Riemann space is spanned by WO parameters representing jump probabilities of the cw model. 
The cw manifold evolves thmugh some characteristic eras: if s m s  at a point, and changes 
to a lie. and then lo a homogeneous spherical surface of the scalar cwauue R = f. l h e  
homogeneous space immediakly transforms to an inhomogeneous space. The inhomogeneity 
gradually grows: a region of lhe inhomogeneous space violenfly oscillates in time and another 
region expands fast. As a whole, the curvahlre of the space deMases and 5001 becomes 
negative. The oscillations have already started to fade away. The negative c w a h r e  goes on 
deaeasing and finally the space converges to a homogeneous saddle surface of R = -1. Such 
a behaviour of the cwaiure is shown to be well understood by the Iem of 'stability' and 
'order parameter' of stochastic processes. In other words, the inhomogeneity, the oscillation, 
and the decrease behaviour of the curvature are closely related lo stability and orderliness of the 
correlated system. 

Department of Engineering Science, Faculty of Engineering, Tohoku UNv&ty, Sendai 980, 

1. Introduction 

A parametrized family S = [ p ( x ,  e)} of probability distributions is often treated in statistical 
inference, where x is a random variable and B = ( @ I ,  02, .  . . , O n )  is an n-dimensional 
parameter. The set S usually forms an n-dimensional differentiable manifold. For instance, a 
noma1 model N ( 1 ,  oz) forms a two-dimensional manifold with coordinates 1 and U .  Such 
statistical manifolds usually have a metricaffine structure as well as a differentiable structure 
[1,2]. The method of statistical manifolds is beginning to have fruitful developments in 
applications to nonlinear multivariable analysis, linear systems, time sequences, information 
theory, neural networks, and so on [3,4]. Applications to physical systems are also 
beginning. In particular, parameter spaces of equilibrium systems such as the T - /.& space 
of gand-canonical dishibutions have been investigated in detail. The investigations [5-101 
showed that the Riemann curvature for various classical and quantum equilibrium system 
diverges to infinity at phase transitions and also that stable systems, with no phase transitions, 
have small values of the curvature. 

Recently we proposed two differential-geometrical approaches to the time evolution of 
non-equilibrium systems [ 111. One approach depicts the evolution by the motion of a point 
in a statistical manifold, and the other one by the motion of a statistical manifold itself. We 
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showed that the Uhlenbeck-Omstein process is a geodesic motion in the statistical manifold 
of negative constant curvature, and that a D-dimensional random walk (RW) is an expansion 
of a U) sphere. 

In the RW model, as a step time N increases, the sphere expands with the radius of 
2.n from the singular state of zero radius to the flat sphere of infinite radius. In other 
words the curvature tensor fades away as 1/N. We regarded this decrease behaviour of the 
curvature tensor as a geometrical representation of approach from an initial unstable state 
to a stable equilibrium state. This interpretation is consistent with the results of Ruppeiner 
[SI, Janyszek era1 [6-9] and Ginoza [IO] for equilibrium system: the curvature for stable 
equilibrium systems becomes small. 

A walker of the RW model may move with step probabilities given at random, that is, 
with no correlation between steps. In reality we find correlated motion almost everywhere. 
Many correlated walk (cw) models appear in the literature, Their probability distribution 
functions are complicated, so it is very difficult to investigate corresponding statistical 
manifolds by analytical methods. In the present paper we develop a numerical method 
to calculate the curvatm of a Riemann space associated with a cw model. The space is 
spanned by two parameters representing jump probabilities of the cw model. 

A scenario of the scalar curvature R is as follows: the time development of the cw 
produces inhomogeneous expansion from a spherical surface of R = 1 to a saddle surface 
of R = -1. The cw manifold starts at a point and changes to a one-dimensional manifold 
and then transforms to a two-dimensional spherical surface of R = 1. The homogeneous 
space immediately deforms to an inhomogeneous space during the time development. A 
region of the space violently oscillates in time and the corresponding curvature is larger than 
that in other regions. Another region with no oscillations expands fast, that is, its curvature 
rapidly decreases. As a whole, the curvature of the space goes on decreasing, and soon 
becomes negative. men  the oscillations already start to fade away. The negative curvature 
goes on decreasing and finally the space converges to a homogeneous saddle surface of 

In what follows we first summarize a cw model and then calculate an associated 
statistical manifold, using a numerical method which is applicable to many other stochastic 
processes. Finally, we proceed to understand the scenario of the R above by physical terms. 
Key words are ‘stability’ and ‘order parameter’. 

R = -1. 

2. cw model 

Our interest is not an application or generalization of cw models but a manifold associated 
with a cw model. According to a method in statistical geometry, a statistical model of a 
physical system produces a manifold with a metric-affine structure in general. To treat a 
correlated motion in a well defined manner, we follow a cw model [12-16]. The cw model 
is as follows. 

F i i  1. Siep probabilities with mrrelations. 
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Suppose that a walker moves along a linear lattice of infinite extension right or left with 
given jump probabilities, which depend on the direction of the previous step. The right 
and left steps are called steps of type 1 and 2, respectively. If the last step is of !ype j ,  
the probabilities of stepping right or left are denoted by pj and q,, with the normalization 
condition 

pj + qj = 1 j = 1.2. ( 1 )  

The definitions of the step probabilities are shown schematically in figure I ,  where the 
steps in question are indicated by full mows, and the last steps by broken arrows. The 
dynamics of the walker with correlated steps can also be represented in a square lattice. The 
walker's moves towards the left correspond to the upward moves of an object on the lattice. 
Let Pj(X, Y) be the probabilities of the object arriving at the site ( X ,  Y )  with step-type j 
after N units of time. The probability of the object arriving at (X, Y) from any direction is 
P(X, Y) = Pl(X,  Y)t Pz(X, Y). Because of X+Y = N, we can regard Ps as functions of 
X and N .  The new function is denoted by Q : Qj(X, N )  = P,(X, Y ) ,  Q ( X ,  N) = P ( X ,  Y ) .  
Consideration of two successive steps yields the following relations for Pi or Q j :  

Q i ( x , N ) =  P I Q I ( X -  1 , N -  l)+pzQdX - 1.N - 1) 
(2) Qdx. N )  = 41 PI (X, N - 1) i- qzPz(X, N - 1) 

Let the walker be subject to the initial condition that it arrived at the origin with a right 
step: 

(X > 1,N > 1) 

(X > 0, N > I). 

Q i ( O , o ) = l  Qz(O,O)=O (3) 

The initial-value problem was exactly solved by Chen, Fujita, Okamura and others [12-161. 
They used a generating function technique. The exact solution for Qj(X ,  N )  is as follows: 

The combination number (3 is defined as M ! / ( M  - L)!L!  €or M 2 L > 0, zero for the 
others. 

Under the other initial conditions one can also solve the basic difference equation (2) 
through the same technique. Those exact solutions are unnecessary in the following. Note 
that the exact solution (4) is an alternating series in the parameter range p~ < PI. It is 
an easy exercise to ascertain that the exact solutions under the other initial conditions also 
are such alternating series in the same range. This characteristic will play a role in the 
dynamical behaviour of a statistical manifold associated with the correlated walk model. 

The cw model and its generalized models were appIied to the conformation of a polymer 
[17-191, the atomic diffusion in crystals with defects [19,20], and the non-equilibrium 
properties of a Lorentz gas [19,21], and so on (see references cited in [12-211). Such 
applications or generalizations of the cw model are not our concern. Let us proceed to 
investigate a set of correlated walkers, that is, a statistical model. 
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3. Associated statistical manifold 

3.1. Basic equations and numerical solutions 

Now we investigate a geometrical structure of a statistical manifold associated with the 
cw model. Let S be a set of the probability functions Q ( X ,  N )  paramehized by the jump 
probabilities p i  and qj. Because of the normalization condition, each function Q ( X .  N )  in 
S is specified by a two-dimensional parameter 6' = (e1, 6") such as 6' = ( p l , q z ) .  Since 
Q ( X ,  N )  is sufficiently smooth in 6'. the set S has the structure of a two-dimensional 
manifold, where 9 plays the role of a coordinate system. 

A Riemenn metric tensor can be naturally introduced in the manifold S: 

where I ( X ,  N )  = In Q ( X .  N )  and E(. )  stands for the expectation with respect to Q ( X ,  N )  
(see [Z] or [l I]). The subscripts following a comma am coordinate derivatives such as 
a,"'. The infinitesimal square distance g i j  d6" d9j does not depend on the manner of 
parametrization 6' of S. It is also invariant under a one-to-one transformation of the random 
variable X to another random variable, for instance the upward steps Y = N - X on the 
square lattice or the displacement along the linear lattice x = X - Y = 2X - N .  

The mehic tensor produces a connection structure, which is prescribed by the Riemann- 
Christoffel connection coefficients: 

r m k l  = i ( g m k , l  + gm1,k - gk1.m) 

or 

The connection srmcture gives the Riemann curvature tensor. Its covariant expression is 
given by 

R..  - i lk/  - gimR$l  

= gim(r;,k - 
= r i j i , k  - r..  ,,k,i f g m n ( r m i f r n j k  - r m i k r n j j , ) .  

+ FZI-; - r:ryk) 
(7) 

Note that the third derivatives of Q ( X ,  N )  in the r ; j / . k  and the ones in the rij,+d cancel 
each other. Namely 
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These geometrical quantities depend on the discrete time N as well as the coordinate 8, 
so the manifold S itself develops in time. We now have interest in the time development 
of local curvedness. Let us numerically evaluate the time evolution of the R at various 
coordinate values. First, by using the exact solution (4) and its first derivatives and second 
derivatives, we performed the numerical calculation in the quadruple precision of 16 bytes. 
But as the calculation for p1 z p z  and large N involves alternating series of extremely large 
terms, we could not obtain reliable results in such cases. So some calculations terminated 
before N = 100. To evade the problem, we successively solved the basic difference relations 
(2) and their derivatives step by step. We use the coordinate system (PI, qz) for a while. 
The coordinate system leads to the following derivatives with simple coefficients: 

Iterative calculation of the basic difference equations (2) and their derivatives (10) gives the 
R at each step N through equations (5x9). Of course, any other coordinate system should 
produce the same value of the scalar R. 

We must exclude the values of the coordinates such that Q(X,  N ) s  become zero. The 
coordinate system (p1.q~) is defined in the range 0 c p1 < 1 and 0 c 42 < 1, in 
general. For instance, Q(O.2) and Q(2 ,2 )  are zero at qz = 0 and p1 = 0, respectively (see 
equation (4). or equation (12) below). The Q(0.2) is zero also at p1 = 1 under an initial 
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condition, Qz(O, 0) = 0, and the Q(2.2) is zero also at 42 = 1 under an initial condition, 
QI @,O) = 0. 

We evaluated the R for many valucs of the coordinates under seven initial conditions: 
five initial conditions were independent of the coordinates and two conditions were 
dependent. Figure 2 displays the time development of the R at some typical coordinate 
values under three initial conditions: 

( 9  Q I  (0,O) = 1 Qz@, 0) = 0 

(ii) QI (0,O) = 0.5 Q~(0 .0 )  = 0.5 (11) 

(iii) QI@,  0) = P Z / ~  + PZ), Qz@, 0) =41/(41 + PZ). 
Q l(O.0). 1 p1=0.1 

io1 
10' ' """'I ' ' .""'I ' . " " '  - 

- + 
LI: 

N 
10-$0 ' " """ LO ' ' """" 102 ' ' ' , , , . ' '  10' 

N 

Figure 2. Steptime development of the scalar m a t u r e  R plus 1 81 1 at some typical coordinate 
valnes under initial conditions Ql(O.0) = 1.05. +a). The wadinate PI and the initial 
condition are indicated at the top of each figure. The coordinate q? is shown for each c w e .  
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Q i  (0,0)=0.5 p1=0.5 

- + 
LL: 

N 

Q1(0,0)=p2/(ql tp2) p 1 =0.1 

100: 

10-1, 

10-2, 

- + w 

Oi(O,O)=O.S p1=0.9 

- + 
LL: 

N 

Q 1 (O,O)=p2/(ql tp2) pl=0.5 

l h l q  
i o ' [  ' " " ' " I  ' """" ' "" 

N 

Ql(O,O)=p2/(q 1 tp2) pl=O,9 
i o '  

100 

lo- '  - + w 
10-2 

i o 3  

Figure 2. (Continued) N 
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Here we omitted curves of ( p 1 . q ~ )  - (1. l), because most of the curves are out of the 
scale in figure 2. For instance, R + 1 at ( p l , q z )  = (0.9,0.9) under Q l ( 0 , O )  = 1 rapidly 
decreases and becomes zero at N = 50. The R + 1 is negative in 51 < N -= 130 and is of 
the order of lo-'. After that it becomes positive and arrives at an extremum 1.0389 x 
at N = 120. Later it monotonically decreases and finally approaches a straight line of 
gradient -1. 

3.2. Eorly behaviour 

At N = 0 and 1, the two-dimensional scalar curvature R diverges to infinity by reason 
of degeneration to lower-dimensional manifolds. The probability function at N = 0, 
Q(0 ,O)  = 1, leads to gll = gz2 = glz = 0. Hence the N = 0 manifold does not 
extend to any direction or it degenerates to a point. 

At N = 1 the probability functions are given by 

Q(o.1)=qiQi(o,o) +qzQz(O,O) QU, 1) =~iQi (O,O)+~zQz(0 ,0) .  (12) 

The two functions, of course, satisfy the normalization condition Q(O.1) + Q(1,l) = 1. It 
is possible to regard one of the two functions as a coordinate transformation, for instance, 
0' = Q(0,l). We then adopt a function independent of Q(0,l) as Oz. "be new coordinate 
system results in gll = l/[O'(l - Si)], g n  = 812 = 0. Thus the N = 1 manifold has no 
extension to the O2 direction or it degenerates to a line. 

At the first non-degenerate time N = 2, the manifold S has the constant positive 
curvature R = f. It is very cumbersome and troublesome to explicitly calculate geometiical 
quantities by using the coordinate system ( p i ,  qz) or its linear transformation. It is 
convenient to choose as a coordinate system any two of the probability functions 

Q(032)  =qiqzQi(OIO)+q:Qz(OIO) 

QU32) = (QIPZ + ~ ~ q i ) Q i ( o , o )  t (pzqi +qzp2)Qz(O10) 

Q ( ~ , ~ ) = ~ : Q I ( O , ~ ) + ~ I ~ Z Q Z ( ~ , O ) .  

(13) 

For instance, choice of 8' = Q(l.2) and O2 = Q(2,2)  makes the probabilities reduce to 
simple expressions: 

Q(O, 2)  = I - 8 '  - e2 ~ ( 1 , 2 )  = el ~ ( 2 , 2 )  = e2. (14) 

These expressions produce the metric components as follows: 

It is a simple exercise to ascertain that the metric leads to R = 4. 
After N = 2, the time development of the R depends on the initial conditions. In an 

early period, N 5 100, the behaviour is complicated. Nevertheless we can find a common 
feature independent of the initial conditions. The curvature oscillates in each region of 
(PI = 0.1,qz < 0.91, (pi = 0.5.qz c 0.5) and (p i  = 0.9, qz < 0.1). 'Ibis suggests that 
the curvature oscillates in the region PI + qz < 1. We have ascertained that numerical data 
omitted here for many coordinate values and initial conditions also show the oscillation 
of the R in the region pi  + qz < 1. We now note that the R in p i  + qz (< 1 violently 
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oscillates and also that its value is large as compared with that in other coordinate values. 
This oscillation corresponds to the fact that the exact solution (4) is an alternating series 
in the range pj  + q2 < 1, that is, PI < p z .  In a physical viewpoint the oscillation is 
thought to reflect the frequent flip-flop motions of such walkers, because PI + q2 -+ 0 is 
equivalent to q1 -+ 1 and pz -+ 1; this means that the smaller the value of p1 + qz is 
made, the more frequentyly the flip-flop steps occur. The larger curvature in PI + qz + 0 
is due to the fact that the localization of the probability function Q(X, N) around the start 
site x = X - Y = 0 is unstable: in the limit state (PI, qz) -+ (0, 0), the walker stays 
forever at x = 0 or x = f l ,  while in the other states the walker can diffuse to distant 
sites. Thus, a slight variation around the origin ( P I ,  42) = (0,O) produces a large change of 
the probability function. In other words the l i t  state (PI, 4 2 )  + (0.0) is unstable. Thus 
the unstableness of the Limit state is distinctly reflected by two properties of the statistical 
manifold the curvature near the unstable state is larger than that of the other states and it 
also oscillates violently. 

In an early period, N 5 50, the curvature of a state around (p1,qz) - (1, I) rapidly 
decreases. The details depend on initial conditions, but the behaviour of rapid decreasing 
is an universal property. (Refer to the curves of (PI, 42) = (0.9.0.7) in figure 2. We also 
ascertained such behaviour at other states such as (PI, qz) = (0.9,0.9), which are omitted 
here.) This propem can also be understood by interpreting the curvature as a measure 
of unstableness. At the start time a walker is localized at a point, n = 0. If the walker 
is specified by (PI,@) - (1, l), it moves quickly out of the origin, as compared with 
other walkers. Hence its unstable motion near the start time produces a rapid change in 
the probability function Q(X, N), and consequently the curvature is expected to vary by a 
large amount in time. 

Thus, in early periods the walkers of (PI,& - (1. 1) as well as ( P I ,  42) - (0,O) are 
unstable and the unstableness appears as the noticeable behaviour of the curvature. 

3.3. Asymptotic behaviour 

In N -+ 03, figure 2 suggests that the dependence of the R on the initial conditions 
disappears and that the R finally approaches a negative constant value -1. In other words 
the R has the asymptotic form of 

(16) 

The inhomogeneity h(p l ,  92) is almost independent of initial conditions. Around N = loo0 
the deviation from R = -1 is less than 6 x  lo-' in the range 0.1 -= P I  < 0.9 and qz 0.01. 

To examine characteristics of the small inhomogeneity h(p1.42) in the order of N-' ,  
we show details of the R at N = loo0 in figure 3, using the linear transformation 

= (P1 + q d / 2  U = (PI - q2)/2. (17) 

Note that for a fixed U the v varies in the range -0.5+ Iu -0.51 < v < 0.5 - (U - 0.51. The 
full Lines correspond to an initial condition, QI (0,O) = 1, as is described in the caption, and 
the broken lines to another initial condition, Ql(0,O) = 0.5. Any broken line of U < 0.8 is 
omitted, because such a line coincides with the full Line of the same coordinate value. The 
other initial conditions also produced similar behaviour, so we do not show their curves. 

Does the independence on the initial conditions around U = 0.9 at N = loo0 mean 
that the N-I term depends on initial conditions? To answer this question, we calculated the 
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N = l O O O  

lo-‘- 

F i g w 3 .  Iheright-leffasy”etry~i-q~)/2vermsUlescalarawahlreRplu~ l a t N =  1000 
for various values of @I + 42)/2 The full lines ecorespond lo Qi(O.0) = 1, and the broken 
lines U) Qi(0.0) = 0.5. 

1 

Figwe4 Iherighl.leffasy”etry(p1-qz)/2versus~escdarnwahue Rplus 1 a t N  = IOW. 
3Mx) and 5W0 for (pi -q1)/2 = 0.9. The full lines mrrespond to Qi(O.0) = I, and the broken 
lines U) Qi(0.0) = 0.5. 
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curvature at later times. Figure 4 shows the curvature in the region U = 0.9 at three times, 
N = 1000, 3000 and 5000, under two typical initial conditions Ql(0.0) = 1,0.5. The full 
lines, Ql(0.0) = 1, gradually approach the broken lines, Ql(0,O) = 0.5. Hence we think 
that the initial condition dependence appearing in figures 3 and 4 is due to higher-order 
terms. Figure 4 also suggests that the two lines coincide with an almost horizontal line in 
N -+ CO. Accordingly we conclude that the inhomogeneity h(u, U) in the N-’ term is: 

(i) independent of initial conditions; 
(U) almost independent of the difference coordinate U = (PI - q2)/2, representing the 

(iii) monotonically decreasing with respect to another coordinate U = (PI + q2)/2, the 
asymmetry between rightward steps and leftward steps; 

mean of the diagonal components of the transition probabilities. 

Note that the coordinate U represents the orderliness of walks. In fact, U -+ 1 is 
equivalent to pz  -+ 0 and q1 + 0, so a walker of U - 1 tends to move almost without flip 
flops. Namely it tends to walk smoothly and regularly. We may then regard the coordinate 
U as a ‘regularity parameter’ or an ‘order parameter’. Hence the third property of the 
inhomogeneity function represents that the scalar curvature R is small for ordered states in 
the asymptotic time region. 

4. Conclusions 

We have investigated the time evolution of a statistical manifold associated with a cw model. 
We have found that the cw manifold evolves through some characteristic eras: it starts at a 
point and changes to a line and then transforms to a two-dimensional homogeneous space of 
the positive scalar curvature R = 4. The space goes on deforming its form, oscillates partly, 
expands, and finally converges to a homogeneous space of the negative scalar curvature 
R = -1. In brief, the CW manifold inhomogeneously evolves from a spherical surface 
to a saddle surface. The relative decrease rate -(l/R)(dR/dN) -+ l/NZ in large N is 
independent of an initial condition, and this rate is the same as that of a Rw model ill]. 
(The Rw manifold is always homogeneous and its curvature shows a simple behaviour 
such as l/N.) As in the Rw model, we interpret the asymptotic decreasing behaviour of the 
curvature as a geometrical representation of the fact that a non-equilibrium system eventually 
proceeds from an initial unstable state to a stable equilibrium state. We have also pointed 
out that the large curvature, the violently oscillating curvature and the rapidly decreasing 
curvature in  an early period are related to the unstableness of a state localized around a 
start site. Further, we have found that the asymptotic small inhomogeneity in a later period 
is independent of initial conditions and that the small inhomogeneity reflects the degree of 
orderliness of a walker’s motion Thus, we conclude that the Curvature is a useful measure 
of stability and orderliness in non-equilibrium systems as well as in equilibrium systems. 
This interpretation of the R for non-equilibrium systems is consistent with Ruppeiner 1.51 
and Janyszek’s result [6-9] for equilibrium systems. 

Some homogeneous statistical manifolds are already known: the normal distributions 
N ( p ,  d), R = -: [a] and classical ideal gases, R = 0 [5]. (For ideal bosons R is positive 
and inhomogeneous, and for ideal fermions R is negative and inhomogeneous [7]. The CW 
manifold converges to a saddle surface of R = -1. 
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